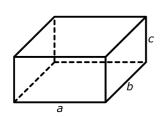

Formelsammlung

für den Mittleren Schulabschluss in Schleswig-Holstein

- gültig ab: 2015/16 -

Figuren			
b h a	Dreieck Flächeninhalt $A = \frac{g \cdot h}{2} = \frac{1}{2} \cdot a \cdot b \cdot \sin(\gamma)$ Umfang $u = g + a + b$	g h a,b γ	Grundseite Höhe Seiten Winkel
а	Quadrat Flächeninhalt $A = a^2$ Umfang $u = 4 \cdot a$	a	Seite
b	Rechteck Flächeninhalt $A = a \cdot b$ Umfang $u = 2 \cdot a + 2 \cdot b$	a,b	Seiten
	Raute Flächeninhalt $A = g \cdot h = \frac{e \cdot f}{2}$ Umfang $u = 4 \cdot g$	g h e,f	Grundseite Höhe Diagonalen
b g	Parallelogramm Flächeninhalt $A = g \cdot h$ Umfang $u = 2 \cdot g + 2 \cdot b$	g b h	Grundseite Seite Höhe
	Trapez Flächeninhalt $A = m \cdot h = \frac{a+c}{2} \cdot h$ Umfang $u = a+b+c+d$	a,c b,d m h	Seiten (a c) Seiten Mittelparallele Höhe
e b	Drachenviereck Flächeninhalt $A = \frac{e \cdot f}{2}$ Umfang $u = 2 \cdot a + 2 \cdot b$	a,b e,f	Seiten Diagonalen
	Kreis Flächeninhalt $A = \pi \cdot r^2$ Umfang $u = 2 \cdot \pi \cdot r = \pi \cdot d$	π ≈ d r	3,14 Durchmesser Radius

Körper

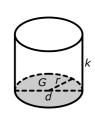


Würfel

Volumen $V = a^3$

Oberfläche $O = 6 \cdot a^2$

a Kante



Quader

Volumen $V = a \cdot b \cdot c$

Oberfläche $O = 2 \cdot (a \cdot b + b \cdot c + a \cdot c)$

a,b,c Kanten

Zylinder

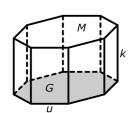
Volumen $V = G \cdot k = \pi \cdot r^2 \cdot k$

Mantelfläche $M = 2 \cdot \pi \cdot r \cdot k = \pi \cdot d \cdot k$

Mantematic M = 2 · R · I · K = R · G · K

Oberfläche $O = 2 \cdot G + M = 2 \cdot \pi \cdot r \cdot (r + k)$

 $\pi \approx 3,14$


G

d Durchmesser

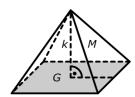
r Radius

k Körperhöhe

Grundfläche

(gerades) Prisma

Volumen $V = G \cdot k$


Mantelfläche $M = u \cdot k$

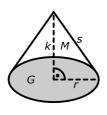
Oberfläche $O = 2 \cdot G + M$

k Körperhöhe

G Grundfläche

u Umfang

Pyramide


Volumen $V = \frac{1}{3} \cdot G \cdot k$

Oberfläche O = G + M

G Grundfläche

M Mantelfläche

k Körperhöhe

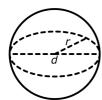
Kegel

Volumen $V = \frac{1}{3} \cdot G \cdot k = \frac{1}{3} \cdot \pi \cdot r^2 \cdot k$

Mantelfläche $M = \pi \cdot r \cdot s$

Oberfläche $O = G + M = \pi \cdot r \cdot (r + s)$

 $\pi \approx 3,14$


G Grundfläche

M Mantelfläche

r Radius

s Mantellinie

k Körperhöhe

Kugel

Volumen $V = \frac{4}{3} \cdot \pi \cdot r^3$

Oberfläche $O = 4 \cdot \pi \cdot r^2$

 $\pi \approx 3,14$

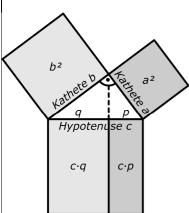
r Radius

d Durchmesser

Satzgruppe des Pythagoras

b² Kathete D San a² Hypotenuse c C²

Satz des Pythagoras

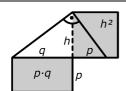

Die Summe der Flächeninhalte der Kathetenquadrate ist so groß wie der Flächeninhalt des Hypotenusenquadrats.

$$a^2 + b^2 = c^2$$

a,b Katheten

c Hypotenuse

Kathetensatz


$$a^2 = c \cdot p$$

$$b^2=c\cdot q$$

a,b Katheten

c Hypotenuse

p,q Hypotenusenabschnitte

Höhensatz

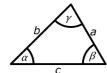
$$h^2 = p \cdot q$$

h Höhe

p,q Hypotenusenabschnitte

Trigonometrie

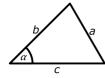
Winkelfunktionen


 $sin(\alpha) = \frac{Gegenkathete}{Hypotenuse}$

 $cos(\alpha) = \frac{Ankathete}{Hypotenuse}$

 $tan(\alpha) = \frac{\textit{Gegenkathete}}{\textit{Ankathete}}$

α Winkel


Sinussatz

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)}$$

a,b,c Seiten α,β,γ Winkel

Kosinussatz

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos(\alpha)$$

a,b,c Seiten α Winkel

Masse eines Körpers

Masse $m = V \cdot \rho$

V Volumen

Dichte

Prozentrechnung

Prozentwert $W = G \cdot \frac{p}{100}$

Prozentzahl $p = \frac{W}{G} \cdot 100$

Grundwert $G = W \cdot \frac{100}{n}$

G Grundwert

Prozentzahl р

Prozentwert

Zinsrechnung

Jahreszinsen $Z = K \cdot \frac{p}{100}$

Monatszinsen $Z_m = K \cdot \frac{p}{100} \cdot \frac{m}{12}$

Tageszinsen $Z_t = K \cdot \frac{p}{100} \cdot \frac{t}{360}$

 $q = 1 + \frac{p}{100}$

Kapital mit Zinseszins $K_n = K_0 \cdot q^n$

Κ Kapital

Startkapital K_o

Prozentzahl

Wachstumsfaktor q

Anzahl Monate m

Anzahl Tage t

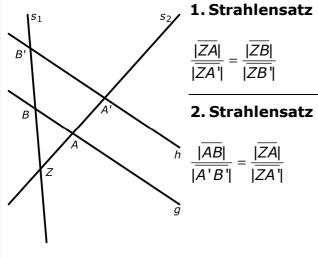
Anzahl Jahre n

Binomische Formeln

1. Binomische Formel

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

2. Binomische Formel


 $(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$

a,b reelle Zahlen

3. Binomische Formel

$$(a+b) \cdot (a-b) = a^2 - b^2$$

Strahlensätze

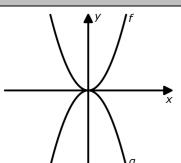
1. Strahlensatz

$$\frac{|\overline{ZA}|}{|\overline{ZA}'|} = \frac{|\overline{ZB}|}{|\overline{ZB}'|}$$

$$\frac{|\overline{ZA}|}{|\overline{ZA}'|} = \frac{|\overline{ZB}|}{|\overline{ZB}'|} \qquad \qquad \frac{|\overline{ZA}|}{|\overline{AA}'|} = \frac{|\overline{ZB}|}{|\overline{BB}'|}$$

$$Z$$
 Zentrum s_1, s_2 Strahlen

g,h Geraden $(g \parallel h)$


A, A' Punkte

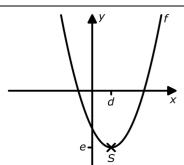
B,B' Punkte

$$\frac{|\overline{AB}|}{|\overline{A'B'}|} = \frac{|\overline{ZA}|}{|\overline{ZA'}|} \qquad \qquad \frac{|\overline{AB}|}{|\overline{A'B'}|} = \frac{|\overline{ZB}|}{|\overline{ZB'}|}$$

$$\frac{|\overline{AB}|}{|\overline{A'B'}|} = \frac{|\overline{ZB}|}{|\overline{ZB'}|}$$

Quadratische Funktionen

Normalparabel


$$f(x)=x^2$$

gespiegelte Normalparabel

$$g(x) = -x^2$$

Variable

$$g(x) = -x^2$$

verschobene Normalparabel

(Scheitelpunktform)

$$f(x) = (x-d)^2 + e$$

- Variable X
- Verschiebung ↔
- e Verschiebung ↓
- Scheitelpunkt

allgemeine Form

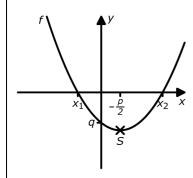
$$f(x) = ax^2 + bx + c$$

Nullstellenform

$$f(x) = a \cdot (x - x_1) \cdot (x - x_2)$$

Scheitelpunktform

$$f(x) = a \cdot (x - d)^2 + e$$


- Variable Χ
- reelle Zahl
- (Streckung) b,c reelle Zahlen
- x_1, x_2 Nullstellen
- $Verschiebung \ \leftrightarrow$
- e Verschiebung \$\(\psi\)
- S Scheitelpunkt

Quadratische Gleichungen

allgemeine Form

$$ax^2 + bx + c = 0$$

Normalform

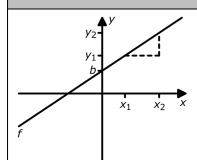
 $p = \frac{b}{a}$

$$q = \frac{c}{a}$$

$$x^2 + px + q = 0$$

Lösungsformel

Variable a, b, c reelle Zahlen p,q reelle Zahlen x_1, x_2 Lösungen


$$X_1 = -\frac{p}{2} + \sqrt{(\frac{p}{2})^2 - q}$$

$$x_2 = -\frac{p}{2} - \sqrt{(\frac{p}{2})^2 - q}$$

$$p = -(x_1 + x_2) \qquad q = x_1 \cdot x_2$$

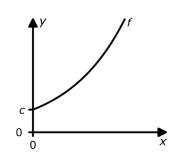
$$a = X_1 \cdot X$$

Lineare Funktionen

Normalform

$$f(x) = m \cdot x + b$$

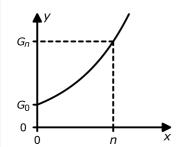
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$


$$x_1, x_2$$
 Variablen

$$y_1 = f(x_1)$$

$$y_1 = f(x_1)$$

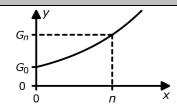
$$y_2 = f(x_2)$$


Exponentialfunktionen

Allgemeine Form

$$f(x) = c \cdot a^x$$

- Variable Χ
- Ausgangswert С
- **Basis** а


Wachstum

$$q = 1 + \frac{p}{100}$$

$$G_n = G_0 \cdot q^n$$

- G_n Endwert
- Anfangswert
- Prozentzahl р
- Wachstumsfaktor q
- Zeitspanne n

Exponentialgleichung

$$G_n = G_0 \cdot q^n$$

$$n = \log_q \frac{G_n}{G_0} = \frac{\log \frac{G_n}{G_0}}{\log q}$$

- Endwert G_n
- Anfangswert G_{o}
- Wachstumsfaktor q
- Zeitspanne

Potenzgesetze

$$a^0 = 1$$

$$a^m \cdot a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}$$

$$a^n \cdot b^n = (a \cdot b)^n$$

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

$$a^{-n} = \frac{1}{a^n}$$

$$(a^m)^n = a^{m \cdot n}$$

a,b reelle Zahlen a>0, b>0

m,n natürliche Zahlen